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A NOTE ON SPARSE QUASI-NEWTON METHODS

by

Mukund Thapa

1. Introduction

Consider the unconstrained minimization problem

Min f(x) (1.0)

xeI6 n

An important class of algorithms used to solve the above problem is that

of Quasi-Newton algorithms [1]. The idea of these methods is to

maintain a positive definite symmetric matrix that approximates the

Hessian at each iteration. Given the point xk in n, the algorithm

obtains a direction of descent, Pk' by solving the system of equations

Bk Pk ' -Sk - (1.1)

where Bk is the approximation to the Hessian at iteration k and

gk is the gradient at xk . The next point, xk+l, is then set to

Xk + ak Pk where Uk is chosen to cause a "sufficient" decrease in

the function value at xk* If the new point, xk+l, satisfies some

convergence criteria, the algorithm is terminated; else, the above

procedure is repeated after obtaining Bk+ 1, a new approximation to

the Hessian, as follows:
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Bk+ 1  B k + Uk  (1.2)

where Uk is a matrix chosen so that B k+ is symmetric, positive

definite and satisfies the Quasi-Newton condition (henceforth referred

to as the QN condition),

Bk+l Sk Y Yk (1.3)

with

S k k+I k ' and Yk gk+l gk

There are a number of different ways of choosing Uk in

equation (1.2). Three possible choices are shown below.

T T BBFS Yk Yk Bk Sk Skk

BFGS Update: ukFGS k T T (1.4)
S k Yk S k B k S k

k T BT

-k~ sk)T+

DFP Update: U D k kB k +Yk(yk k B
kT

Yk Sk

(1.5)

(y- Bka s)sk T

YT 2
(Y k sk)T~ kY

Self-Scaling BFGS: B mB k k kk) Tk k + kk (1.6)
k. k TYBT

k ksk s B s k Yk
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Quasi-Newton methods have been very successful in solving

unconstrained and constrained problems of moderate size. The difficulty

in applying these methods to large problems is that a symmetric n x n

matrix (or a factorization) must be stored. However, many large pro-

blems have a sparse Hessian whose sparsity pattern is known (or can be

determined) a priori. In this case, it seems possible to maintain a

suitably sparse approximation to the Hessian; and, much current research

is being directed to this objective (see 121,[3],[4),[5]).

Updates of the type given by equations (1.4), (1.5) and (1.6)

cause total fill-in (that is, they do not preserve any zeros of the

Hessian approximation). Obtaining updates that preserve sparsity and

satisfy the Quasi-Newton condition (1.3) requires the solution of a

linear system of equations whose coefficient matrix has the same

sparsity pattern as the Hessian. This does not guarantee positive

definiteness; and, in fact, it is not possible to always satisfy the

Quasi-Newton condition (1.3) and preserve positive definiteness while

maintaining sparsity (see [31, for example). Furthermore, sparse

updates are usually of rank n; and, hence it is not possible to easily

update the factorization of the Hessian approximation. This results

in the additional work of refactorizing the Hessian at each iteration.

Shanno [3] showed how the sparse analog of any symmetric update

Uk can be derived by variational means. This paper shows how these

sparse analogs can be derived as a simple extension of Toint's deriva-

tion of a sparse update.
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2. Definitions and Notation

In the rest of the paper the subscript k will be dropped and

the subscript k + 1 will be replaced by the superscript *.

Let B be the sparse symmetric matrix representing the approxi-

mation to the Hessian at the start of iteration k

Let N - {(i,J): Bij - 01 that is, N represents the sparsity

pattern assumed at the start of the algorithm. Note that the sparsity

pattern is assumed to be fixed and any additional zeros created are

treated as non-zeros.

Let

N - {(ij): i,j - 1, ... , n}\N

M {(i,j): Bij 0 )1

For any symmetric matrix A, define matrices AN and A as

follows:

(Aij (i,j) EN

iJ 0(i,j) EN

(A0 
(,J) EN

A ij (iJ) R
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In words, AN is the matrix A with zeros in the positions correspond-

ing to the non-zeros of B; and Ajj is the matrix A with zeros in

the positions corresponding to the zeros of B. Then A can be written

as

A -AN + AN

Define Di to be a diagonal matrix whose diagonal elements are

0 or 1 depending on the sparsity pattern of the ith row of B.

That is,

(Vi~ =i: if (I,j)N =

(D 10if (i,j)EN

i

Finally, define s - Di s for any vector s.

An example that illustrates the above definitions and notations

now follows.

Example:

10 1 0 0 25 3 4 5

1 20 2 0) Am( 2B- A-

2 30 32 45

0 0 3 40 5 3 6 55

;

I.!



Then,

o 0 4 5 25 3 0 0

0 0 33 35 2 0

N 4 0 0 0N 0 2 45 6

D5 (H> ) (1 655
0D 1 (1 20
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3. Toint's Method

Toint [2) proposed finding a matrix E such that: E is closest

to B in some sense; B (= B + E) has the same sparsity pattern as

B (thus, E has the same sparsity pattern as B); and B* satisfies

the Quasi-Newton condition (1.3). Formally, the problem can be stated

as:

(Pl) Min NEF = El , where 1'F is the Frobenius norm (3.0)
i-F j=l

such that Es - y - Bs (3.1)

E - 0 (i,) C N (3.2)

E - E7 • (3.3)

By variational means, Toint obtained the following result

0 (i,j) EN

Eij i (3.4)

xi s i + AS sta (ij) E

T
where A - (X1, ..., A ) is the solution of the linear system

'= y -Bs (=Es) (3.5)
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PI

with 'P def ined by

'P - (S (S + I 6 -V i j(36ii '5 j 5 1 2 ij(36

and 6i is the Kronecker delta.

Note that (P is symmetric arnd has the same sparsity pattern as

B. Furthermore, 'P is positive definite if and only if Isl> 0

for all i (see Toint [2]).

In matrix notation,

n iT i T
Eu i X Xi[ei(s ) + s e],) (3.7)

where e i is the unit vector with 1 in the i thposition, and

n J2 T
'Ps )s [( i + IsiI2 e j]e~ . (3.8)

Toint also obtained a generalization by minimizing IWEW1 where

W is a diagonal matrix given by

W (t ~2 . 0)with t i > 0 for 1 1, .. ,n . (3.9)
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In this case the and E matrices are defined by

S+ k
ij t k-l i T~k a(.10

E j t [i( i) + j(siiI(.1



L1

4. Sparse Analogs of Symmetric Updates

Shanno [3) showed how sparse analogs of symmetric updates (using

BFGS as an example) could be derived by variational means. This section

shows how these sparse analogs and those using self-scaling can be

derived as a simple extension of Toint's results.

Let B* = nB + U, where U is symmetric but in general will not

have the same sparsity pattern as B; n is some scale factor; and

,
B s - y. Then, by definition we have

BN = UN  (4.0)

BR - nBR + UR (Note that BR - B) (4.1)

Now B- has the same sparsity pattern as B but does not satisfy the

NN

*^

Quasi-Newton condition (1.3). Hence, we want to find a B given by

- B( + E ,(4.2)
^*

such that B is symmetric, has the same sparsity pattern as B and

satisfies the Quasi-Newton condition (1.3).

Next, note that

B s - (B N+ E)s

= (B*- B N+ E)s

Sy- (B - E)s
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Clearly, B s y if and only if (BN E)s -0 or

Es B s (4.4)
NB

Thus B is obtained by solving the following problem

(P2) Min IEI . Ei (4.4)F~ jl

such that Es - BN s (4.5)

E j - 0 (i,j) E N (4.6)

E = ET  . (4.7)

Problem P2 is almost the same as problem Pl. The only difference

is in equation (4.5) of P2 and equation (3.1) of Pl. Thus the solution

to problem P2 is:

0 (1js(i,j) EN

E w' (4.8)

where A (A1, A. n) is the solution of the linear system
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X BN s (= Es) (4.9)

with P defined by (3.6) or (3.8).

If the norm to be minimized is chosen to be IWEWI2 with W
F

given by (3.9), then E and 'P are given by (3.10) and (3.11)

respectively.
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5. A Note on Computations

Shanno [3] indicated that the computation of B s does not

require the storage of the elements of UN but does require the

computation of the elements of UN (that is, those elements of U

corresponding to the zero elements of B). However, the following

result shows that the elements of UN need not be computed.

B s = U s (from (4.0))
N N

= (U - UR)s (by definition of UN)

= Us - U- s
N

= (B* nB)s - UR s (since B =B + U)

= y -nBs - U- s

6. Conclusion

This paper has shown how the sparse analogs of Quasi-Newton

updates can be derived as a simple extension of Toint's results; and,

how the computation of B* s can be done efficiently. At present,
N

research on the computational and theoretical aspects of sparse Quasi-

Newton algorithms is continuing, and further results will be described

in a later technical report.
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